Bio MEMS/NEMS
Micro-/nanoelectromechanical systems (MEMS/NEMS) micro-/nanoelectromechanical system (MEMS/NEMS) need to be designed to perform expected functions in short durations, typically in the millisecond to picosecond range. Most mechanical properties are known to be scale dependent, therefore the properties of nanoscale structures need to be measured. For biomes/biomes, biomes/bones adhesion between biological molecular layer molecular layers and the substrate, and friction and wear of biological layers, can be important. Bionics is the application of biological methods and systems found in nature to the study and design of engineering systems and modern technology Bionics means the replacement or enhancement of organs or other body parts by mechanical versions. Bionic implants differ from mere prostheses by mimicking the original function very closely, or even surpassing it. Bio robotics is the use of biological characteristics in living organisms as the knowledge base for developing new robot designs. The term can also refer to the use of biological specimens as functional robot components. Bio robotics intersects the fields of cybernetics, bionics, biology, physiology, and genetic engineering.
Related Conference of Bio MEMS/NEMS
Bio MEMS/NEMS Conference Speakers
Recommended Sessions
- Advancement in Nanotechnology
- Applications for Biosensors
- Bio MEMS/NEMS
- Bio sensing Technology
- Bioelectronics
- Bioinstrumentation
- Biosensors
- Biosensors for Imaging
- DNA Chips and Nucleic Acid Sensors
- DNA Chips and Nucleic Acid Sensors
- Environmental Biosensors
- Enzyme-Based Biosensors
- Gas Sensors
- Nanobioelectronics
- Nanomaterials & Nanoanalytical systems
- Photonic Sensor Technologies
- Photonic Sensor Technologies
- Security and Sensing
- Transducers to Biosensors
Related Journals
Are you interested in
- 3-D Structure Determination - Structural Biology 2025 (Germany)
- Advancements in structural Biology - Structural Biology 2025 (Germany)
- Biochemistry and Biophysics - Structural Biology 2025 (Germany)
- Computational Approach in Structural Biology - Structural Biology 2025 (Germany)
- Drug Designing and Biomarkers - Structural Biology 2025 (Germany)
- Frontiers in Structural Biology - Structural Biology 2025 (Germany)
- Gene Regulation and Cell Signaling - Structural Biology 2025 (Germany)
- Hybrid Approaches in Structure Prediction - Structural Biology 2025 (Germany)
- Molecular Biology - Structural Biology 2025 (Germany)
- Molecular Biology Techniques - Structural Biology 2025 (Germany)
- Molecular Modelling and Dynamics - Structural Biology 2025 (Germany)
- Proteomics and Genomics - Structural Biology 2025 (Germany)
- Sequencing Analysis - Structural Biology 2025 (Germany)
- Structural Bioinformatics - Structural Biology 2025 (Germany)
- Structural Biology - Structural Biology 2025 (Germany)
- Structural Biology Databases - Structural Biology 2025 (Germany)
- Structural Biology in Cancer Research - Structural Biology 2025 (Germany)
- Structural Enzymology - Structural Biology 2025 (Germany)